10.6084/m9.figshare.7865858.v1 Stanley Chibuzor ONWUBU Stanley Chibuzor ONWUBU Phumlane Selby MDLULI Phumlane Selby MDLULI Shenuka SINGH Shenuka SINGH Tshepo TLAPANA Tshepo TLAPANA A novel application of nano eggshell/titanium dioxide composite on occluding dentine tubules: an in vitro study SciELO journals 2019 Dentin Dentin Sensitivity Dentin Desensitizing Agents Tooth Remineralization 2019-03-20 02:47:02 Dataset https://scielo.figshare.com/articles/dataset/A_novel_application_of_nano_eggshell_titanium_dioxide_composite_on_occluding_dentine_tubules_an_in_vitro_study/7865858 <div><p>Abstract To synthesize Nano eggshell-titanium-dioxide (EB@TiO2) biocomposite and to evaluate its effectiveness in occluding opened dentine tubules. EB@TiO2 was synthesized and characterized using X-ray diffraction (XRD), and Transmission Electron Microscope (TEM). Sixteen simulated bovine dentine discs were prepared and randomly assigned into four groups according to the following treatment (n = 4): Group 1: No treatment; Group 2: eggshell powder; Group 3: EB@TiO2; Group 4: Sensodyne. These were then agitated in a solution of 1g powder and 40mL water for 3hours. Thereafter, each dentine discs from the respective groups were post-treated for 5 min with 2wt% citric acid to test their acid resistant characteristics. Scanning Electron Microscope (SEM) was used to observe the effectiveness of occluded dentine pre-and post-treatment. The cytotoxicity of the synthesized EB@TiO2 was tested using NIH 3T3 assay. ANOVA was used to evaluate the mean values of the occluded area ratio and the data of MTS assay. This was followed by a multi-comparison test with Bonferroni correction (α = .05). The XRD confirmed that EB@TiO2 was successfully modified through ball-milling. The TEM revealed the presence of both spherical and irregular particle shape powders. The SEM result showed that EB@TiO2 could effectively occlude open dentine tubules. Equally, the result demonstrated that EB@TiO2 exhibited the highest acid resistant stability post-treatment. NIH 3T3 assay identified that EB@TiO2 had little effect on the NIH 3T3 cell line even at the highest concentration of 100µg/ml. This study suggests that the application of EB@TiO2 effectively occluded dentine tubules and the occlusion showed a high acid resistant stability.</p></div>