ANALYSIS OF THE TARGET DECOMPOSITION TECHNIQUE ATTRIBUTES AND POLARIMETRIC RATIOS TO DISCRIMINATE LAND USE AND LAND COVER CLASSES OF THE TAPAJÓS REGION

Abstract This study aims to analyze the capability of the target decomposition techniques and the polarimetric ratios applied to the ALOS/PALSAR-2 satellite polarimetric images to discriminate the land use and land cover classes in the Tapajós National Forest region, Pará State. Three full polarimetric ALOS/PALSAR-2, level 1 single look complex scenes were selected to generate the coherence and the covariance matrices to derive the Cloude-Pottier and the Freeman-Durden target decomposition attributes. From the radiometrically calibrated PALSAR-2 images, we generated the backscatter coefficients, the cross polarized ratio (RC; HV/HH), the parallel polarized ratio (RP; VV/HH) and the Radar Forest Degradation Index (RFDI). The images resulting from these polarimetric attributes were processed by the Maximum Likelihood (MAXVER) classifier coupled with the Iterated Conditional Modes (ICM) contextual algorithm. We found that the classifications derived from the target decomposition attributes, mainly from the Cloude-Pottier technique, with a Kappa index of 0.75, presented a significant higher performance than those derived from the RC ratio, RP ratio, and RFDI.