SciELO journals
Browse
1/1
7 files

Arbuscular mycorrhizal fungi associated with the babassu palm (Attalea speciosa) in the eastern periphery of Amazonia, Brazil

dataset
posted on 2018-10-24, 02:58 authored by Camila Pinheiro NOBRE, Marlon Gomes da COSTA, Bruno Tomio GOTO, Christoph GEHRING

ABSTRACT Babassu, Attalea speciosa (Arecaceae) is a ruderal palm native to Amazonia, which turned dominant in frequently burned lands throughout the ‘arc of deforestation’ and other degraded lands, in extreme cases attaining complete dominance. This study investigated arbuscular mycorrhizal fungi (AMF) as one possible explanation for the outstanding ecological success of this exceptional palm. We explored the relationships between the babassu palm and native arbuscular mycorrhizal fungi and babassu effects on the AMF richness and mycorrhizal inoculum potential (MIP) in the eastern periphery of Amazonia. For this purpose, we sampled topsoil (0-20 cm) at the onset of the rainy season from a 5-year-old secondary forest regrowth (SEC) area with three levels of babassu dominance (sites with 10, 50 and 70% babassu biomass shares), and at three distances (0, 2.5 and 4 m) from isolated babassu patches within a degraded pasture (PAS), both with five replications per treatment. Glomerospore density varied from 100 to 302 per gram of soil, 56% higher in SEC than PAS. We identified a total of 16 AMF species, with dominance of Acaulospora (six species) followed by Glomus (three species). AMF richness increased with babassu dominance in SEC sites, and reduced with distance from babassu patches within the PAS. The colonization rate of babassu roots was higher in SEC than in PAS, whereas MIP was similar in both areas and without treatment differences. Our study points to strong mycorrhizal association of the babassu palm as a potential mechanism for its outstanding ecological success in degraded lands.

History

Usage metrics

    Acta Amazonica

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC