SciELO journals
Browse
1/1
9 files

Biological behavior of magnesium-substituted hydroxyapatite during bone repair

dataset
posted on 2020-02-19, 02:46 authored by G. G. Santos, V. L. C. Nunes, S. M. O. C. Marinho, S. R. A. Santos, A. M. Rossi, F. B. Miguel

Abstract The aim of this study was to analyze the biological behavior and osteogenic potential of magnesium (Mg) substituted hydroxyapatite (HA) microspheres, implanted in a critical bone defect, considering that this ion is of great clinical interest, since it is closely associated with homeostasis and bone mineralization. For the purpose of this study, 30 rats were used to compose three experimental groups: GI - bone defect filled with HA microspheres; GII - bone defect filled with HA microspheres replaced with Mg; GIII - empty bone defect; evaluated at biological points of 15 and 45 days. The histological results, at 15 days, showed, in all the groups, a discrete chronic inflammatory infiltrate; biomaterials intact and surrounded by connective tissue; and bone neoformation restricted to the borders. At 45 days, in the GI and GII groups, an inflammatory response of discrete granulomatous chronic type was observed, and in the GIII there was a scarce presence of mononuclear inflammatory cells; in GI and GII, the microspheres were seen to be either intact or fragmented, surrounded by fibrous connective tissue rich in blood vessels; and discrete bone neoformation near the edges and surrounding some microspheres. In GIII, the mineralization was limited to the borders and the remaining area was filled by fibrous connective tissue. It was concluded that the biomaterials were biocompatible and osteoconductive, and the percentage of Mg used as replacement ion in the HA did not favor a greater bone neoformation in relation to the HA without the metal.

History

Usage metrics

    Brazilian Journal of Biology

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC