Development of Web and Mobile Applications for Chemical Toxicity Prediction

Computational tools are recognized to provide high-quality predictions for the assessment of chemical toxicity. In the recent years, mobile devices have become ubiquitous, allowing for the development of innovative and useful models implemented as chemical software applications. Here, we will briefly discuss this recent uptick in the development of web-based and mobile applications for chemical problems, focusing on best practices, development, usage and interpretation. As an example, we also describe two innovative apps (Pred-hERG and Pred-Skin) for chemical toxicity prediction developed in our laboratory. These applications are based on predictive quantitative structure-activity relationships (QSAR) models developed using the largest publicly available datasets of structurally diverse compounds. The developed tools ensure both highly accurate predictions and easy interpretation of the models, allowing users to discriminate potential toxicants and to purpose structural modifications to design safer chemicals.