Free Vibration of flexible soft-core sandwiches according to layerwise theories differently accounting for the transverse normal deformability

2019-10-30T02:48:22Z (GMT) by Ugo Icardi Andrea Urraci

Abstract This study aims to generalize a previously developed accurate and inexpensive 3-D zig-zag theory up to an arbitrary representation form and to determine which simplifications are yet accurate in determining transverse shear and normal stress/deformation effects on vibrations of soft-core sandwiches with not moving middle/neutral plane (pumping). Natural frequencies are calculated using displacements assumed differently across the thickness, having fixed d.o.f., not yet explored forms of representation and zig-zag functions differently accounting for the transverse normal deformability and that partially or fully fulfill physical constraints. Applications are presented for sandwich plates and beams with length-to-thickness ratios and material properties of faces and core varying within an industrial range, for which layerwise effects are very important and so suited to the evaluation of theories. Analytical solutions are found using the same trial functions and expansion order for all theories, so to evaluate their accuracy under the same conditions. The choice of the representation form and of zig-zag functions is shown immaterial if displacement field coefficients are recomputed across the thickness by enforcing the fulfillment of all physical constraints (using symbolic calculus). Furthermore, it is shown that assigning a specific role to each coefficient is immaterial, as well as exchanging the order of representation of in-plane and transverse displacement components and even that zig-zag functions could be omitted. This no longer occurs for lower-order theories with only a partial fulfillment of constraints. Pumping motions are highlighted as the first modes, which require the theories much accurately accounting for transverse normal deformability.