Frozen-to-jamming-to-fluid Transition of Weakly Sheared Granular Systems by Low-frequency Mechanical Spectroscopy

Granular matter usually displays frozen, jamming and fluidized states when submitted to an external vibration with increasing intensity. The dissipation properties of granular systems with three different millimeter-size glass grains (0.1, 0.5 and 1.9 mm) have been investigated by a modified low-frequency inverted torsion pendulum under a shear strain and an external pressure. With increasing the immersed depth of the oscillating probe, all the systems show the frozen, jamming and fluidized behaviors. Furthermore, the critical depth at which the transition occurs increases with increasing grain size, but decreases with the application of pressure. A qualitative explanation is tentatively proposed to understand the underlying mechanism of complex viscoelastic properties of the glass particle systems.