SciELO journals
Browse
1/1
14 files

Impact of grade distribution on the final pit limit definition

dataset
posted on 2018-10-10, 02:49 authored by Luiz Alberto Carvalho, Felipe Ribeiro Souza, Leonardo Soares Chaves, Beck Nader, Taís Renata Câmara, Vidal Félix Navarro Torres, Roberto Galery

Abstract Geologic modeling is an important step in determining the benefits and final pit dimensions for mining operations. Geostatistical models and distance-based functions are the main methods used to estimate the grade behavior. However, these two methods, despite their similar mean values, differ in spatial variability. The objective of this article is to prove, by comparing the two methodologies, that models with different spatial variability using the Lerchs-Grossmann algorithm will output subtly different final pit dimensions and scheduling. Furthermore, with the direct block schedule (DBS), these differences can be considerable. The tests compared the methodologies using the following three models: inverse distance (ID), ordinary kriging (OK) and turning bands simulation (TBS). The results demonstrate that the Lerchs-Grossmann algorithm is only slightly sensitive to the spatial variability of the grade; however, DBS requires the model populations to be better defined because of its greater sensitivity to spatial variability.

History

Usage metrics

    REM - International Engineering Journal

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC