SciELO journals
Browse
1/1
5 files

Production and characterization of alginate microparticles obtained by ionic gelation and electrostatic adsorption of concentrated soy protein

dataset
posted on 2018-12-05, 03:05 authored by Gabriela Barros Silverio, Lyssa Setsuko Sakanaka, Izabela Dutra Alvim, Marianne Ayumi Shirai, Carlos Raimundo Ferreira Grosso

ABSTRACT: Microencapsulation is used for protection and release of bioactive compounds. Combination of encapsulation methods allows the production of matrices with better technological properties compared to the application of one of the methods alone. Use of ionic gelation produces porous microparticles, and coating it with a protein, by electrostatic interaction, may contribute to a better protection of the active compound. The objective of the research was to produce alginate microparticles (AG) through ionic gelation and to coat them with soluble protein from soy protein concentrate. Two factors were studied, calcium concentration during ionic gelation (0.8, 1.6 and 2.4% w/w) and pH (3.5 and 7.0) of the protein solution for electrostatic interaction. Zeta potential (ZP) of biopolymers and microparticles were determined. Microparticles were characterized according to its morphology, average size and size distribution, as well as protein adsorption. Microparticles presented (154-334μm) multinuclear distribution of active compound, continuous and smooth surface, with a great standard deviation considering average size. The calcium concentration did not influence the protein adsorption on microparticles.The pH used in protein adsorption showed significant effect, with higher adsorption occurring at pH 3.5 (6.5 to 6.7% w/w, dry basis,db, of adsorbed protein) compared to pH 7.0 (<2.0% w/w, db, of adsorbed protein) indicating that electrostatic interaction was determinant for the protein coating. At this situation, ionic gelation microparticles and proteins presented ZP with opposite charges (pH>pKa AG

History

Usage metrics

    Ciência Rural

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC