SciELO journals
Browse

Study of behavior alloy Ti and 316L in to simulated body fluid by electrochemical techniques

dataset
posted on 2019-09-18, 03:37 authored by Daniela Garcés López, Pedro José Arango, Alejandro Echavarria, Belarmino Segura Giraldo, Elisabeth Restrepo Parra

ABSTRACT In this work, Ti-316L stainless steel was produced, and its electrochemical behavior was characterized. Ti-steel alloys were produced using an induction furnace, by mixing commercial Ti and 316L stainless steel. X-ray diffraction analyses showed the presence of both the materials, Ti and 316L, in the samples produced. The elemental composition of the materials was determined by optical emission spectroscopy and energy-dispersive spectroscopy, which showed similar quantities of both the elements. Both commercial 316L stainless steel and Ti–steel were studied in simulated biological fluid for imitate a like composition of body blood plasma. Electrochemical experiments conducted at 37°C indicated the stable passive polarization behavior of the Ti-steel alloy. Furthermore, the electrochemical behavior of the 316L stainless steel was also analyzed for comparison purposes. Corrosion velocities were determined using the Tafel method and corrosion resistances were obtained using the electrochemical impedance spectroscopy. The Ti-steel exhibited better protection capacity, compared with the commercial 316L steel. The corrosion velocity and the passive current density of the Ti–steel alloy were lower than those exhibited by the 316L stainless steel.

History

Usage metrics

    Matéria (Rio de Janeiro)

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC