Synthesis of immobilized biocatalysts for wastewater decontamination

Abstract The use of biodegradable polymers arouses biotechnological interest. This use allows applications in health and environment. Here is present the characterization and a proposition for the use of cashew (Anacardium othonianum Rizz.) polysaccharide including peroxidase immobilization for wastewater bioremediation. From the cashew gum exudate, the polysaccharide was extracted by precipitation in ethanol at 4 °C. This material is able to immobilize Horseradish peroxidase by physical adsorption and via sodium periodate with 75% and 93% of efficiency, respectively. These systems have a storage and operational stability, and removed phenolic compounds above 50% in industrial effluent samples. The bioassays in the presence of Artemia salina and Allium cepa root not only revealed no toxicity to this polysaccharide, but also presented the ability to reduce the toxicity of the industrial effluent by 50%. Immobilized cashew polysaccharide complexes are potential alternatives for waste treatment and decontaminant agents for water treatment applications. The polysaccharide is a low-cost natural matrix for environmental-technological applications.