Thermal Dehydrogenation Characteristics of Li-Sr-Al-N-H Hydrogen Storage System

posted on 16.05.2018 by Yue Zhang, Tingzhi Si, Yongtao Li, Dongming Liu

Thermolysis behavior of the Li-Sr-Al-N-H hydrogen storage system prepared by ball milling of Sr2AlH7 + LiNH2 mixture was investigated in this paper. The results show that thermal decomposition of the Li-Sr-Al-N-H system proceeds mainly in two steps with only hydrogen desorption. The thermal stability of this system is lowered as compared to the individual starting material, resulting in the hydrogen desorption initiating from about 125 °C. In addition, about 0.91 and 1.53 wt.% of hydrogen can be isothermally desorbed within 180 min at 180 and 330 °C, respectively. The decreased thermal stability of the Li-Sr-Al-N-H system might be attributed to the chemical reactions between the starting materials during the heating process with the formation of LiSrH3 and N-containing amorphous phases.