SciELO journals
Browse
1/1
14 files

Application of Support Vector Machine and Finite Element Method to predict the mechanical properties of concrete

dataset
posted on 2019-08-14, 02:54 authored by Aldemon L. Bonifácio, Julia C. Mendes, Michele C. R. Farage, Flavio S. Barbosa, Ciro B. Barbosa, Anne-Lise Beaucour

Abstract Compressive strength and Young’s modulus are the main properties used in the design of concrete structures. They are responsible for the cost, safety and dimensioning of the structure, and are generally measured in expensive and time-demanding tests. This fact encourages researches for fast and cost-effective methods to investigate the concrete’s properties. Among the concrete types, structural Lightweight Aggregate Concrete (LWAC) is one of the most employed worldwide, but it presents limited studies and mix design techniques. Thus, this work evaluates and compares the performances of two methods to predict the compressive strength of LWAC samples: Support Vector Machine and Finite Element Method. To this end, both strategies use the LWAC’s mix proportions and the Young’s modulus, and the compressive strength of mortars and aggregates obtained from an experimental program from the literature. The results encourage further researches towards the development of a numerical tool that may assist engineers for practical purposes, since both methods show good agreement with the validation data.

History

Usage metrics

    Latin American Journal of Solids and Structures

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC