Facies and depositional environments for the coquinas of the Morro do Chaves Formation, Sergipe-Alagoas Basin, defined by taphonomic and compositional criteria

Lacustrine carbonate rocks form important hydrocarbon accumulations along the Brazilian continental margin, some of which are contained in oil fields in which coquinas are one of the main reservoirs (viz. Campos Basin). The complexity and heterogeneity of these deposits make them a challenge in terms of reservoir description. For the necessary classification and paleoenvironmental interpretation of the coquinas, it is essential to evaluate many aspects including biological (such as carbonate productivity), sedimentological (energy regime in the depositional environment, transport of bioclasts, terrigenous supply), taphonomic (fragmentation of shells, abrasion) and diagenetic processes. The facies analysis applied in this study is considered a more appropriate classification approach to understand these coquinas, since it is more flexible and comprehensive than the existing classifications for carbonate rocks. The material investigated here consists of rock samples of the coquinas from the Atol Quarry of the Morro do Chaves Formation (Barremian/Aptian), Sergipe-Alagoas Basin. These rocks that crop out in the Atol quarry complex can be considered as a case study for similar coquinas reservoirs found in the Brazilian continental margin basins. Six sedimentary facies were described, using the main taphonomic (fragmentation of shells) and compositional (presence of micrite and siliciclastic matrix) features as a diagnostic criteria. Two carbonate facies, two mixed carbonate-siliciclastic facies and two siliciclastic facies (mudstones) were identified. From the facies succession, combined with a review of the literature on the subject, the following depositional paleoenvironments were defined: high-energy lake platform, lacustrine delta in a high-energy lake platform and lake-centre. In this paper, a new facies model for the studied coquinas succession is proposed.