SciELO journals
Browse
1/1
5 files

Identification of populations and hybrid combinations of maize for in natura consumption

dataset
posted on 2019-12-18, 03:17 authored by Daniel Sarto Rocha, Sara Regina Silvestrin Rovaris, Cinthia Souza Rodrigues, Marcelo Ticelli, Eduardo Sawazaki, Maria Elisa Ayres Guidetti Zagatto Paterniani

ABSTRACT Brazil is one of the leading countries in the production of maize (Zea mays), with great potential for growing green maize, which has a superior commercial value in relation to maize marketed in the form of grains. Although important, the availability of cultivars recommended for the production of green maizeis still very scarce. The objectives of the present study were to estimate genetic parameters and to identify promising hybrid combinations for the development of new green maize cultivars to farmers. In the summer crop of 2016/17, ten hybrid combinations obtained through a complete diallel of five maize populations, with attributes for in natura consumption, were evaluated in two sites of the state of São Paulo, Brazil: the Instituto Agronômico(IAC) in Campinas and Tatuí. A randomized block design was used with two additional checks, with three replications, in plots with four five-meter rows spaced by 0.9 m in Campinas and 0.8 m in Tatuí, with 5 plants per meter. The following agronomic traits were assessed: grain yield, ear yield with straw and ear yield without straw, using Griffing’s method 4. Significant effects of genotypes, environments and interaction genotypes × environments were detected for all traits. Estimates of the general combining ability led to the selection of populations P2, P4, and P5 as the ones with a higher concentration of favorable alleles for the characters evaluated. Estimates of specific combining ability and improved grain yield performance allowed P2xP3 to be selected as the most promising for production of green maize.

History

Usage metrics

    Bragantia

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC