SciELO journals
Browse
1/2
28 files

ON AN INTEGRATED DYNAMIC CHARACTERIZATION OF VISCOELASTIC MATERIALS BY FRACTIONAL DERIVATIVE AND GHM MODELS

dataset
posted on 2019-03-20, 02:41 authored by Wagner Barbosa de Medeiros Júnior, Cíntia Teixeira Préve, Fernanda Oliveira Balbino, Thatiane Alves da Silva, Eduardo Márcio de Oliveira Lopes

Abstract The passive vibration control of mechanical systems under unwanted vibrations can be accomplished in a very effective way by using devices incorporating viscoelastic materials. The design of such devices requires a broad knowledge of the dynamic properties of the employed viscoelastic material, usually supplied by adequate mathematical models. Among the available mathematical models, the fractional derivative (FD) model and the Golla-Hughes-McTavish (GHM) model, along with either the Williams-Landel-Ferry (WLF) equation or the Arrhenius equation, are now very prominent. The current work investigates the use of these models in a wide and integrated dynamic characterization of a typical and thermorheologically simple viscoelastic material. It focuses on experimental data collected from 0.1 to 100 Hz and -40 °C to 50 °C, which are simultaneously manipulated to raise both the frequency and the temperature dependencies of the material. In fitting the models, a hybrid approach - combining techniques of genetic algorithms and nonlinear optimization - is adopted. The ensuing results are evaluated by means of objective function values, comparative experimental-predicted data plots, and the Akaike’s Information Criterion (AIC). It is shown that the four-parameter fractional derivative model presents excellent curve fitting results. As for the GHM model, its modified version is the most adequate, although a higher number of terms is required for a satisfactory goodness-of-fit. None the less the fractional derivative model stands out.

History

Usage metrics

    Latin American Journal of Solids and Structures

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC