Production of biodegradable starch nanocomposites using cellulose nanocrystals extracted from coconut fibers

Abstract Different polymeric matrices have been investigated for use in the development of biodegradable films. The incorporation of cellulose nanocrystals in such films has particularly attracted attention because of the potential for achieving improved properties of starch nanocomposites. In the present study, cellulose nanocrystals were extracted from coconut fibers and incorporated in cassava and potato starch films at different concentrations. The properties of the different nanobiocomposite films were comparatively evaluated, including their barrier and mechanical properties. All the films, regardless of the nanocrystal concentration, were found to exhibit low solubility in water, with increased moisture content particularly observed in the films with higher nanocrystal concentrations. The potato starch film with the lowest nanocrystal concentration was found to exhibit the best mechanical properties. The observations of this study indicated that the source of the starch and the nanocrystal concentration determined the properties of the nanobiocomposite films.